Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nanoscale ; 16(16): 7965-7975, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38567436

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that mostly affects joints. Although RA therapy has made significant progress, difficulties including extensive medication metabolism and its quick clearance result in its inadequate bioavailability. The anti-inflammatory effect of zein was reported with other medications, but it has certain limitations. There are reports on the anti-oxidant and anti-inflammatory effect of aescin, which exhibits low bioavailability for the treatment of rheumatoid arthritis. Also, the combinatorial effect of zein with other effective drug delivery systems is still under investigation for the treatment of experimental collagen-induced rheumatoid arthritis. The focus of this study was to formulate and define the characteristics of zein-coated gelatin nanoparticles encapsulated with aescin (Ze@Aes-GNPs) and to assess and contrast the therapeutic effectiveness of Ze@Aes-GNPs towards collagen-induced RA in Wistar rats. Nanoprecipitation and the layer-by-layer coating process were used to fabricate Ze@Aes-GNPs and their hydrodynamic diameter was determined to be 182 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to further validate the size, shape, and surface morphology of Ze@Aes-GNPs. When tested against foreskin fibroblasts (BJ), these nanoparticles demonstrated significantly high cytocompatibility. Both Aes and Ze@Aes-GNPs were effective in treating arthritis, as shown by the decreased edoema, erythema, and swelling of the joints, between which Ze@Aes-GNPs were more effective. Further, it was demonstrated that Aes and Ze@Aes-GNPs reduced the levels of oxidative stress (articular elastase, lipid peroxidation, catalase, superoxide dismutase and nitric oxide) and inflammatory indicators (TNF-α, IL-1ß and myeloperoxidase). The histopathology findings further demonstrated that Ze@Aes-GNPs considerably reduced the infiltration of inflammatory cells at the ankle joint cartilage compared to Aes. Additionally, immunohistochemistry examination showed that treatment with Ze@Aes-GNPs suppressed the expression of pro-inflammatory markers (COX-2 and IL-6) while increasing the expression of SOD1. In summary, the experiments indicated that Aes and Ze@Aes-GNPs lowered the severity of arthritis, and critically, Ze@Aes-GNPs showed better effectiveness in comparison to Aes. This suppression of oxidative stress and inflammation was likely driven by Aes and Ze@Aes-GNPs.


Subject(s)
Arthritis, Experimental , Escin , Gelatin , Nanoparticles , Rats, Wistar , Zein , Animals , Gelatin/chemistry , Zein/chemistry , Rats , Nanoparticles/chemistry , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Escin/chemistry , Escin/pharmacology , Male , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Inflammation/drug therapy , Inflammation/pathology , Collagen/chemistry
2.
Methods Mol Biol ; 2761: 559-567, 2024.
Article in English | MEDLINE | ID: mdl-38427261

ABSTRACT

Spinal cord injury (SCI) is a devastating clinical condition that affects millions of people worldwide. SCI primarily affects males in younger age groups. It is characterized by a complex of neurological dysfunctions that can lead to permanent disability. We describe an adapted technique for SCI, i.e., a contusion model of SCI, in this chapter. This model is widely used to study the pathology of SCI and test potential therapies. The experimental contusion is performed by using a compression device, which allows the creation of a reproducible injury animal model through the definition of specific injury parameters. A detailed methodology has been developed and described here that utilizes a stereotactic frame and impactor to produce reproducible injuries.


Subject(s)
Contusions , Spinal Cord Injuries , Humans , Male , Rats , Animals , Spinal Cord Injuries/pathology , Disease Models, Animal , Imaging, Three-Dimensional , Spinal Cord/pathology
3.
Methods Mol Biol ; 2761: 623-633, 2024.
Article in English | MEDLINE | ID: mdl-38427265

ABSTRACT

Stroke is the third-leading cause of death and the leading cause of acquired adult disability worldwide. Several ischemic stroke models are currently available. However, mimicking focal cerebral ischemia (FCI) is the most common. The formation of an embolic or thrombotic occlusion at or near the middle cerebral artery causes most events in FCI. The current protocol closely mimics the etiology of human stroke and ensures that the results obtained are highly relevant. The method described in this protocol yields reproducible results. The success of this model in ischemic research can be examined through the utilization of Doppler blood flow imaging equipment.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Rats , Humans , Animals , Infarction, Middle Cerebral Artery/complications , Disease Models, Animal , Brain Ischemia/etiology , Middle Cerebral Artery/diagnostic imaging
4.
Life Sci ; 340: 122480, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38301876

ABSTRACT

AIM: The liver plays a crucial role in biotransformation but it is susceptible to chemical-induced damage, known as hepatotoxicity. Traditional therapies for protecting the liver face significant challenges, including poor bioavailability, off-target effects, adverse reactions, drug breakdown, and inadequate uptake. These issues emphasize the need for precise, targeted therapeutic approaches against hepatotoxicity. MATERIALS AND METHODS: The objective of our research was to develop a customized, biocompatible, and biodegradable nanodrug delivery system for hepatoprotection. We chose collagen hydrolyzed protein, or gelatin, as the base material and utilized solvent evaporation and nanoprecipitation methods to create nanoparticles with size ranging from 130 to 155 nm. The resulting nanoparticles exhibited a spherical and smooth surface, as confirmed by scanning and transmission electron microscopy. KEY FINDINGS: Bioactive aescin (AES), into these gelatin nanoparticles (AES-loaded gel NPs), we tested these nanoparticles using a hepatotoxicity model. The results were indicating a significant reduction in the levels of key biomolecules, including NF-κB, iNOS, BAX, and COX-2 and decreased serum levels of enzymes ALT and AST. This reduction correlated with a notable alleviation in the severity of hepatotoxicity. Furthermore, the treatment with AES-loaded gel NPs resulted in the downregulation of several inflammatory and liver-specific biomarkers, including nitrite, MPO, TNF-α, and IL-6. SIGNIFICANCE: In summary, our study demonstrates that the AES-loaded gel NPs were markedly more effective in mitigating experimental hepatotoxicity when compared to the free aescin. The nanoparticles exhibited a propensity for suppressing liver damage, showcasing the potential of this targeted therapeutic approach for safeguarding the liver from harmful chemical insults.


Subject(s)
Chemical and Drug Induced Liver Injury , Nanoparticles , Rats , Animals , Rats, Wistar , Escin/metabolism , Gelatin/pharmacology , Carbon Tetrachloride/toxicity , Liver/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Nanoparticles/chemistry
5.
Life Sci ; 334: 122206, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37879159

ABSTRACT

AIMS: Rheumatoid arthritis (RA) is chronic inflammatory disorder mainly affects the lining of articular cartilage of synovial joints characterized by severe inflammation and joint damage. The expression of proteolytic enzymes like MMP-2 and Neutrophil Elastase (NE) worsens the RA condition. To address this concern, we have synthesized dual enzyme targeted chlorotoxin conjugated nanomicelles loaded with sivelestat as broad spectrum treatment for RA. MATERIALS AND METHODS: Conjugation of the chlorotoxin over nanomicelle and incorporation of sivelestat in nanomicelle provide it dual targeting potential. The sivelestat loaded nanomicelle (SLM) evaluated for the drug release and in-vitro cytocompatibility. Further, investigated its in-vivo anti-arthritic potential on collagen-induced arthritis in wistar rats. KEY FINDINGS: The microscopic observation of SLM showed spherical ball like appearance with size ranging from 190 to 230 nm. SLM showed good drug loading and encapsulation efficiency along with no cytotoxicity against healthy cell lines. In-vivo therapeutic assessment on collagen induced arthritis rat model showed potential chondroprotection. The microscopic visualization of articular cartilage by staining showed that it restores the cartilage integrity and lowers the expression of pro-inflammatory enzymes showed by Immunohistochemistry and Immunofluorescence. We observed that, it restrain the mediators of synovial inflammation by simultaneous inhibition of the proteolytic enzymes involved in swelling, cartilage destruction and joint damage which provides strong chondroprotection. SIGNIFICANCE: We report that significant alleviation of inflammation and inhibition of proteolytic enzymes together might provide enhanced potential for the treatment and management of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Cartilage, Articular , Rats , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Inflammation/drug therapy , Cartilage, Articular/metabolism , Rats, Wistar , Peptide Hydrolases
6.
ACS Biomater Sci Eng ; 9(9): 5312-5321, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37593880

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory disease that severely affects joints and restricts locomotion. Various treatment regimens are available for RA, providing short-term relief from pain, but long-term relief from the disease is still not available. Evidently, cytokines play a crucial role in the pathophysiology of the disease. However, aberrant immune responses, genetic dispositions, viral infections, or toxicants are some possible causative mediators of RA. The synovial fluid of rheumatoid arthritis patients encompass cytokines, especially osteoclastogenic cytokines, and invasion factors such as macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL). Moreover, tumor necrosis factor-α (TNF-α) and interleukins (IL-1, 6, and 17) intensify osteoclast differentiation and activation. Therefore, in order to restrict the cytokine expression, we used budesonide as a therapeutic lead and encapsulated it into a highly biocompatible hydrogel system. The hydrogel system developed by us is enzyme-responsive and provides sustained drug release flow over an extended period of time. This hydrogel is characterized by ζ-potential analysis, field-emission scanning electron microscopy (FE-SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and it is further encapsulated with budesonide (glucocorticoids) for therapeutic purposes. Evidently, Bud-loaded ER-hydrogel showed improvement in joint physiology compared to the disease group and downregulated the inflammatory markers.


Subject(s)
Arthritis, Rheumatoid , Hydrogels , Humans , Cytokines , Budesonide , Arthritis, Rheumatoid/drug therapy , Drug Liberation
7.
Stem Cells ; 41(11): 987-1005, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37591309

ABSTRACT

Stroke is a major contributor to mortality and impairment on a global scale, with few effective treatments available. Aberrant expression of various non-coding RNAs (ncRNAs) has been identified after stroke onset, impacting neurogenesis, angiogenesis, apoptosis, and autophagy. The roles and mechanisms of ncRNAs hold great promise for future ischemic stroke treatments, as they could modify stroke impact and course on a well-controllable molecular level. Exploring the functions and underlying mechanisms of ncRNAs after stroke has the potential to unveil novel therapeutic targets for the treatment of stroke and may also pave the way toward novel and more precise diagnostic options for stroke and stroke outcomes. This review emphasizes the importance of ncRNAs in the treatment of stroke and their potential as therapeutic targets.


Subject(s)
Ischemic Stroke , RNA, Long Noncoding , Stroke , Humans , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Stroke/genetics , Stroke/therapy , Neurogenesis/genetics
8.
ACS Biomater Sci Eng ; 9(8): 4781-4793, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37497615

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammation-related disease that severely affects the colon and rectum regions. A variety of therapy regimens are used for the treatment of UC. Clinically, therapeutic enema is the choice of therapy for UC patients. Irrespective of on-site administration, the major limitation of therapeutic enemas is the dispossession of the medicine followed by low drug availability for the therapeutic action. In our present work, we have developed an enzyme-responsive injectable hydrogel (ER-hydrogel) to overcome the limitations of therapeutic enema. The hydrogels possess two major advantages, which are being exploited for therapeutic drug delivery in UC: prolonged retention and enzyme responsiveness. The former is one of the prominent advantages of hydrogel compared to free drug enema and the latter controls the release of the drug or provides drug release on-demand. The ER-hydrogel was formulated by the heat-cool method and for therapeutic purposes, a corticosteroid drug, budesonide (Bud), was encapsulated into the ER-hydrogel and evaluated for its various physicochemical and therapeutic potentials in dextran sodium sulfate (DSS)-induced UC. In vitro and ex vivo adhesion studies confirm the retention or mucoadhesive nature of the ER-hydrogel, and the upsurge in Bud release from the Bud-loaded ER-hydrogel upon the addition of esterase enzyme confirms the enzyme-mediated drug release from the ER-hydrogel. Moreover, Bud-loaded ER-hydrogel exhibited promising results in alleviating the disease activity index of UC, and restored the length of the colon, which is the main hallmark of UC. In terms of the health of the colon tissue, the Bud-loaded ER-hydrogel restored the colonic tissue damage, as seen in the H&E-stained, AB-NR-stained, and HID-AB-stained colon sections. Finally, the Bud-loaded ER-hydrogel also markedly subsided the IL-1ß, TNF-α, MPO, and nitrite levels in serum and colon tissues. Thus, the fabricated Bud-loaded ER-hydrogel possesses appreciable translational potential due to its ability to significantly ameliorate inflammatory changes compared to naive or water-based therapeutic enema in acute experimental colitis in mice.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , Colitis/chemically induced , Colitis/drug therapy , Colitis, Ulcerative/drug therapy , Inflammation/drug therapy , Hydrogels/therapeutic use
9.
ACS Nano ; 17(9): 8680-8693, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37102996

ABSTRACT

Ischemia-reperfusion (I/R) injury is a disease process that affects several vital organs. There is widespread agreement that the NLRP3 inflammasome pathway plays a crucial role in the development of I/R injury. We have developed transferrin-conjugated, pH-responsive nanomicelles for the entrapment of MCC950 drug. These nanomicelles specifically bind to the transferrin receptor 1 (TFR1) expressed on the cells of the blood-brain barrier (BBB) and thus help the cargo to cross the BBB. Furthermore, the therapeutic potential of nanomicelles was assessed using in vitro, in ovo, and in vivo models of I/R injury. Nanomicelles were injected into the common carotid artery (CCA) of a middle cerebral artery occlusion (MCAO) rat model to achieve maximum accretion of nanomicelles into the brain as blood flows toward the brain in the CCA. The current study reveals that the treatment with nanomicelles significantly alleviates the levels of NLRP3 inflammasome biomarkers which were found to be increased in oxygen-glucose deprivation (OGD)-treated SH-SY5Y cells, the I/R-damaged right vitelline artery (RVA) of chick embryos, and the MCAO rat model. The supplementation with nanomicelles significantly enhanced the overall survival of MCAO rats. Overall, nanomicelles exerted therapeutic effects against I/R injury, which might be due to the suppression of the activation of the NLRP3 inflammasome.


Subject(s)
Brain Ischemia , Neuroblastoma , Reperfusion Injury , Chick Embryo , Rats , Humans , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion
10.
Semin Cancer Biol ; 92: 102-127, 2023 07.
Article in English | MEDLINE | ID: mdl-37054904

ABSTRACT

Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.


Subject(s)
Brain Neoplasms , Glioma , Ischemic Stroke , Stroke , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Glioma/complications , Glioma/genetics , Brain Neoplasms/complications , Brain Neoplasms/genetics , Stroke/genetics
11.
Biomater Adv ; 148: 213383, 2023 May.
Article in English | MEDLINE | ID: mdl-36958119

ABSTRACT

Ulcerative colitis is a chronic inflammatory disease which poorly affects the colon and spreads toward the rectum over time. Cortisone (CRT) is a corticosteroid clinically used for the management of inflammatory diseases like colitis and other inflammatory bowel diseases. Due to some physicochemical properties' cortisone has limited potency in clinics. To overcome drug-related problems, we successfully prepared lipid nanocarriers with generally regarded as safe (GRAS) materials approved by USFDA. The present study aimed to assess the therapeutic efficacy of CRT-loaded 6-o-stearoyl ascorbic acid (SAA) nanostructured lipid carriers (NLCs) against DSS-induced colitis mice. Formulation and characterizations of reported nanostructured lipid carrier were performed according to our previously optimized parameters. The average hydrodynamic diameter of NLCs was 182 nm as measured by DLS with 81.14 % encapsulation efficacy. TEM, AFM and SEM images analysis confirmed its spherical appearance. hTERT-BJ cells viability up to a dose of 500 µg/ml shows cytocompatible characteristics of blank NLCs. CRT-loaded NLCs treatment normalizes physically observed parameters such as disease activity index, weight variation etc. These NLCs were able to significantly reduce the severity of colitis in terms of colon histoarchitecture, regaining of the goblet cells, mucins secretions, inhibition of proinflammatory cytokines etc. Treatment with CRT-loaded NLCs effectively downregulated the overexpression of inflammatory enzymes like cyclooxygenase-2 (COX-2), Inducible nitric oxide synthase (iNOS) etc. The results of this study concluded that these CRT-encapsulated NLCs efficiently manage the disease severity induced by DSS.


Subject(s)
Colitis , Cortisone , Nanostructures , Mice , Animals , Drug Carriers/chemistry , Nanostructures/chemistry , Colitis/chemically induced , Colitis/drug therapy , Lipids/chemistry
12.
Stem Cell Rev Rep ; 19(5): 1415-1426, 2023 07.
Article in English | MEDLINE | ID: mdl-36811746

ABSTRACT

Ischemic stroke is the major cause of death and morbidity worldwide. Stem cell treatment is at the forefront of ischemic therapeutic interventions. However, the fate of these cells following transplantation is mostly unknown. The current study examines the influence of oxidative and inflammatory pathological events associated with experimental ischemic stroke (oxygen glucose deprivation (OGD)) on the stem cell population (human Dental Pulp Stem Cells, and human Mesenchymal Stem Cells) through the involvement of the NLRP3 inflammasome. We explored the destiny of the above-mentioned stem cells in the stressed micro (-environment) and the ability of MCC950 to reverse the magnitudes. An enhanced expression of NLRP3, ASC, cleaved caspase1, active IL-1ß and active IL-18 in OGD-treated DPSC and MSC was observed. The MCC950 significantly reduced NLRP3 inflammasome activation in the aforementioned cells. Further, in OGD groups, oxidative stress markers were shown to be alleviated in the stem cells under stress, which was effectively relieved by MCC950 supplementation. Interestingly, whereas OGD increased NLRP3 expression, it decreased SIRT3 levels, implying that these two processes are intertwined. In brief, we discovered that MCC950 inhibits NLRP3-mediated inflammation by inhibiting the NLRP3 inflammasome and increasing SIRT3. To conclude, according to our findings, inhibiting NLRP3 activation while enhancing SIRT3 levels with MCC950 reduces oxidative and inflammatory stress in stem cells under OGD-induced stress. These findings shed light on the causes of hDPSC and hMSC demise following transplantation and point to strategies to lessen therapeutic cell loss under ischemic-reperfusion stress.


Subject(s)
Ischemic Stroke , Sirtuin 3 , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxygen , Glucose , Sulfonamides/pharmacology
13.
Semin Cancer Biol ; 89: 38-60, 2023 02.
Article in English | MEDLINE | ID: mdl-36669712

ABSTRACT

Cancer as a disease possess quite complicated pathophysiological implications and is among the prominent causes of morbidity and mortality on global scales. Anti-cancer chemotherapy, surgery, and radiation therapy are some of the present-day conventional treatment options. However, these therapeutic paradigms own several retreats, including lack of specificity, non-targeted toxicological implications, inefficient drug delivery to targeted cells, and emergence of cancer resistance, ultimately causing ineffective cancer management. Owing to the advanced and better biophysical characteristic features and potentiality for the tailoring and customizations and in several fashions, nanotechnology can entirely transubstantiate the cancer identification and its managements. Additionally, nanotechnology also renders several answers to present-day mainstream limitations springing-up in anti-cancer therapeutics. Nanocarriers, owing to their outstanding physicochemical features including but not limited to their particle size, surface morphological features viz. shape etc., have been employed in nanomedicinal platforms for targeting various transcription factors leading to worthy pharmacological outcomes. This transcription targeting activates the wide array of cellular and molecular events like antioxidant enzyme-induction, apoptotic cell death, cell-cycle arrest etc. These outcomes are obtained after the activation or inactivation of several transcription factors and cellular pathways. Further, nanoformulations have been precisely calibrated and functionalized with peculiar targeting groups for improving their efficiency to deliver the drug-payload to specified and targeted cancerous cells and tissues. This review undertakes an extensive, across-the-board and all-inclusive approach consisting of various studies encompassing different types of tailored and customized nanoformulations and nanomaterials designed for targeting the transcription factors implicated in the process of carcinogenesis, tumor-maturation, growth and metastasis. Various transcription factors viz. nuclear factor kappa (NF-κB), signal transducer and activators of transcription (STAT), Cmyc and Twist-related protein 1 (TWIST1) along with several types of nanoparticles targeting these transcription factors have been summarized here. A section has also been dedicated to the different types of nanoparticles targeting the hypoxia inducing factors. Efforts have been made to summarize several other transcription factors implicated in various stages of cancer development, growth, progression and invasion, and their targeting with different kinds of nanomedicinal agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Nanomedicine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Transcription Factors , Drug Delivery Systems , Neoplasms/drug therapy , Neoplasms/genetics
14.
Semin Cancer Biol ; 88: 123-137, 2023 01.
Article in English | MEDLINE | ID: mdl-36603792

ABSTRACT

Cancer Stem Cells (CSCs) are now considered the primary "seeds" for the onset, development, metastasis, and recurrence of tumors. Despite therapeutic breakthroughs, cancer remains the leading cause of death worldwide. This is because the tumor microenvironment contains a key population of cells known as CSCs, which promote tumor aggression. CSCs are self-renewing cells that aid tumor recurrence by promoting tumor growth and persisting in patients after many traditional cancer treatments. According to reports, numerous transcription factors (TF) play a key role in maintaining CSC pluripotency and its self-renewal property. The understanding of the functions, structures, and interactional dynamics of these transcription factors with DNA has modified the hypothesis, paving the way for novel transcription factor-targeted therapies. These TFs, which are crucial and are required by cancer cells, play a vital function in the etiology of human cancer. Such CSC TFs will help with gene expression profiling, which provides crucial data for predicting the prognosis of patients. To overcome anti-cancer medication resistance and completely eradicate cancer, a potent therapy combining TFs-based CSC targets with traditional chemotherapy may be developed. In order to develop therapies that could eliminate CSCs, we here concentrated on the effect of TFs and other components of signalling pathways on cancer stemness.


Subject(s)
Neoplasm Recurrence, Local , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Neoplasm Recurrence, Local/pathology , Signal Transduction , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/genetics
15.
Mol Pharm ; 20(1): 172-182, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36472567

ABSTRACT

Ulcerative colitis is a multifactorial disease of the gastrointestinal tract which is caused due to chronic inflammation in the colon; it usually starts from the lower end of the colon and may spread to other portions of the large intestine, if left unmanaged. Budesonide (BUD) is a synthetically available second-generation corticosteroidal drug with potent local anti-inflammatory activity. The pharmacokinetic properties, such as extensive first-pass metabolism and quite limited bioavailability, reduce its therapeutic efficacy. To overcome the limitations, nanosized micelles were developed in this study by conjugating stearic acid with caffeic acid to make an amphiphilic compound. The aim of the present study was to evaluate the pharmacological potential of BUD-loaded micelles in a mouse model of dextran sulfate sodium-induced colitis. Micelles were formulated by the solvent evaporation method, and their physicochemical characterizations show their spherical shape under microscopic techniques like atomic force microscopy, transmission electron microscopy, and scanning electron microscopy. The in vitro release experiment shows sustained release behavior in physiological media. These micelles show cytocompatible behavior against hTERT-BJ cells up to 500 µg/mL dose, evidenced by more than 85% viable cells. BUD-loaded micelles successfully normalized the disease activity index and physical observation of colon length. The treatment with BUD-loaded micelles alleviates the colitis severity as analyzed in histopathology and efficiently, overcoming the disease severity via downregulation of various related cytokines (MPO, NO, and TNF-α) and inflammatory enzymes such as COX-2 and iNOS. Results of the study suggest that BUD-loaded nano-sized micelles effectively attenuate the disease conditions in colitis.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , Budesonide/pharmacology , Budesonide/therapeutic use , Micelles , Inflammation/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/drug therapy , Colon , Disease Models, Animal
16.
Neuroprotection ; 1(2): 99-116, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38283953

ABSTRACT

Exosome-based treatments are gaining traction as a viable approach to addressing the various issues faced by an ischemic stroke. These extracellular vesicles, mainly produced by Mesenchymal Stem Cells (MSCs), exhibit many properties with substantial therapeutic potential. Exosomes are particularly appealing for stroke therapy because of their low immunogenicity, effective cargo transport, and ability to cross the blood-brain barrier. Their diverse effects include neuroprotection, angiogenesis stimulation, inflammatory response modulation, and cell death pathway attenuation, synergistically promoting neuronal survival, tissue regeneration, and functional recovery. Exosomes also show potential as diagnostic indicators for early stroke identification and customized treatment options. Despite these promising qualities, current exosome-based therapeutics have some limitations. The heterogeneity of exosome release among cell types, difficulty in standardization and isolation techniques, and complications linked to dosage and targeted administration necessitates extensive investigation. It is critical to thoroughly understand exosomal processes and their complicated interactions within the cellular milieu. To improve the practicality and efficacy of exosome-based medicines, research efforts must focus on improving production processes, developing robust evaluation criteria, and developing large-scale isolation techniques. Altogether, exosomes' multifunctional properties offer a new route for transforming stroke treatment and significantly improving patient outcomes.

18.
ACS Biomater Sci Eng ; 8(12): 5210-5220, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36446128

ABSTRACT

Synthetic lethality is a pragmatic targeted cancer therapy approach in which cancer cells harboring genetic alterations are exploited for the specific killing of cancer cells. Earlier, we have established a synthetic lethal (SL) interaction between two genes that are CHK2 and PRDX2 in colorectal cancer (CRC) cells. The SL interaction between CHK2 and PRDX2 resulted in selective targeting of CHK2-defective CRC cells. N-Carbamoyl alanine (NCA) is a PRDX2 inhibitor and is a peptide-like organic compound, which degrades after oral administration in harsh gastric pH. To overcome the limitations of NCA, a chitosan-based nanocarrier was developed for the entrapment of NCA. In this study, we targeted the SL interaction between PRDX2 and CHK2 using NCA-loaded chitosan nanoparticles (NCA-Chit NPs) to selectively inhibit the CHK2-null HCT116 cells. NCA-Chit NPs were assessed for various physicochemical characterizations such as the hydrodynamic diameter (size), zeta potential, and polydispersity index using a Zetasizer. Additionally, morphological studies for the shape and size of NPs were confirmed by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Cellular uptake of NPs was confirmed using confocal microscopy, which exhibited that nanoparticles were able to internalize into the HCT116 cells. Blank Chit NPs were found to be cytocompatible as they did not exert any cytotoxic effects on hTERT, L929, and Caco-2 cells (intestinal epithelial cells). Importantly, NCA-Chit NPs were quite hemocompatible also. In the form of an NCA-chitosan nanoformulation, the efficacy was enhanced by about 8 times compared to free form of NCA towards selective killing of CHK2-null HCT116 cells as compared to HCT116 cells. The chitosan-based nanoformulation for NCA was developed to augment the efficacy of the NCA for enhanced cell death of colorectal cancer cells having CHK2 defects.


Subject(s)
Chitosan , Colorectal Neoplasms , Nanoparticles , Humans , Chitosan/pharmacology , Caco-2 Cells , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Peroxiredoxins/genetics
20.
Biomed Pharmacother ; 156: 113950, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411635

ABSTRACT

Squamous cell carcinoma is a frequent skin cancer still demanding to understand the underlying mechanisms for better clinical outcomes. Pristimerin, a natural quinonemethide triterpenoid, has shown promising therapeutic outcome due to its anti-cancer activity and multi-targeting potential. We explored the underlying mechanisms of pristimerin-induced programmed cell death of primary (A431) and metastatic (A388) cutaneous squamous cell carcinoma (cSCC) cells. Our results show that pristimerin inhibits growth and proliferation of cSCC through JNK activation. Moreover, pristimerin causes cell cycle arrest and induces cell death via apoptosis and autophagy. Interestingly, use of apoptosis (z-VAD-FMK) and autophagy (3-methyladenine) inhibitors confirmed vital role of programmed cell death in pristimerin-mediated anti-cancer actions. JNK inhibitor, SP600125, also mitigated pristimerin-induced apoptotic and autophagic actions. Moreover, pristimerin-mediated anti-cancer activity acts by generating reactive oxygen species (ROS) thereby inducing JNK signaling. Use of N-acetyl cystine (NAC), a universal ROS scavenger, significantly reversed pristimerin-induced programmed cell death through downregulation of JNK. Pristimerin sensitized skin cancer cells to conventional anticancer drugs cisplatin, azacytidine and doxorubicin through JNK activation, as confirmed by SP600125. Our results indicate that pristimerin mediates programmed cell death and sensitized skin cancer cells to conventional anti-cancer drugs via ROS-mediated JNK activation.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Humans , Reactive Oxygen Species/metabolism , Carcinoma, Squamous Cell/drug therapy , Skin Neoplasms/drug therapy , MAP Kinase Signaling System
SELECTION OF CITATIONS
SEARCH DETAIL
...